Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Peripheral and central p38 MAPK mediates capsaicin-induced hyperalgesia.

Pain 2004 October
The stress-activated mitogen-activated protein kinase (MAPK) p38 is emerging as an important mediator of pain. The present study examined the possible involvement of peripheral and spinal p38 MAPK in capsaicin-induced thermal hyperalgesia. Topical capsaicin produced phosphorylation of p38 MAPK in the skin from the affected hindpaw as well as the corresponding lumbar spinal cord in a time dependent manner. Topical capsaicin produced robust C-fiber mediated thermal hyperalgesia that was inhibited by systemic, local peripheral, or central intrathecal pre-treatment with the p38 MAPK inhibitor, SD-282. Intraperitoneal SD-282 (10-60 mg/kg) significantly and dose-dependently attenuated capsaicin-induced C-fiber mediated thermal hyperalgesia. Similarly, 0.1-5mg/kg subcutaneous SD-282 in the hindpaw dose-dependently attenuated capsaicin-induced thermal hyperalgesia. Intrathecal administration of 1microg SD-282 was also anti-hyperalgesic in this model. Functionally, SD-282 decreased capsaicin-induced release of calcitonin gene related peptide in an in vitro skin release assay, consistent with a role for p38 MAPK in peripheral nerve function. These results suggest that p38 MAPK plays a role in the development of hyperalgesic states, exerting effects both centrally in the spinal cord and peripherally in sensory C fibers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app