Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Inorganic phosphate affects the pCa-force relationship more than the pCa-ATPase by increasing the rate of dissociation of force generating cross-bridges in skinned fibers from both EDL and soleus muscles of the rat.

The effect of inorganic phosphate (Pi) on Ca2+ -activation of actomyosin ATPase activity and force in permeabilized (skinned) single extensor digitorum longus (EDL) and soleus muscle fibers of the rat were investigated. Increasing concentrations of Pi decreased force more than ATPase rate at all Ca2+ concentrations and this effect was more pronounced at submaximal Ca2+ -activation. Increasing Pi caused both the normalized pCa-ATPase and pCa-force relationship to be shifted to a higher Ca2+ concentration. At all Ca2+ concentrations ATPase was activated at a lower concentration of Ca2+ than force and this difference in Ca2+ concentration required for the activation of ATPase and force was greater in fast-twitch (EDL) than in slow twitch (soleus) muscle. Soleus muscle pCa-ATPase and pCa-force curves were more sensitive to Ca2+ (pCa50 = 5.97 and 5.89, respectively) than EDL (pCa50 = 5.68 and 5.54, respectively). Finally the shape of the pCa-ATPase and pCa-force curves was similar and not affected by Pi. Analysis shows that Pi increases the rate of dissociation of force generating myosin cross-bridges (ratio of ATPase/force (g(app at all Ca2+ concentration, especially at submaximal Ca2+ -activation levels. Pi effects on g(app) are discussed in terms Pi interacting with the isomerization high force AM*ADP states to form high force transitional AM*ADP*Pi* states which facilitate the dissociation of ADP from AM*ADP. Increasing Ca2+ during Ca2+ -activation of the fibers is associated with a progressive decrease in rate of dissociation of force generating myosin cross-bridges g(app).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app