COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Immune properties of recombinant vaccinia virus encoding CD154 (CD40L) are determined by expression of virally encoded CD40L and the presence of CD40L protein in viral particles.

Cancer Gene Therapy 2004 December
Expression of costimulatory molecules by recombinant poxviruses is a promising strategy for enhancing therapeutic vaccines. CD40-CD40L interactions are critical for conditioning dendritic cells (DC) and priming T- and B-cell immunity. We constructed a vaccinia virus expressing murine CD40L (rV-CD40L) and studied its immunomodulatory properties in vitro. Direct DC infection with control vaccinia or psoralen/UV-inactivated rV-CD40L stimulated high levels of interleukin 12 (IL-12) release. However, replication-competent rV-CD40L did not stimulate IL-12 under similar conditions. We observed a high level of CD40L protein on purified viral particles and demonstrated that induction of IL-12 by nonreplicating rV-CD40L was blocked by anti-CD40 antibodies suggesting that functional CD40L on viral particles contributed to alterations in IL-12 synthesis. Since cross-presentation of tumor-associated antigens by DC is augmented by viral infection of tumor cells, we infected MC38 murine colon carcinoma cells with rV-CD40L. Infected cells stimulated IL-12 secretion by DC and proliferation of B cells and DX5(+) (NK/NKT) cells through direct CD40-CD40L interaction. A subpopulation of NKT cells expressing CD40 (NK1.1(+), CD3(lo)) appeared to be a major effector population responding to MC38/rV-CD40L. These results highlight the complex immune regulatory effects of rV-CD40L defined by the cumulative effects of CD40L expression, presence of CD40L protein in viral particles, and the replication potential of the virus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app