Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A.

Severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for SARS infection. Nucleocapsid protein (NP) of SARS-CoV (SARS_NP) functions in enveloping the entire genomic RNA and interacts with viron structural proteins, thus playing important roles in the process of virus particle assembly and release. Protein-protein interaction analysis using bioinformatics tools indicated that SARS_NP may bind to human cyclophilin A (hCypA), and surface plasmon resonance (SPR) technology revealed this binding with the equilibrium dissociation constant ranging from 6 to 160nM. The probable binding sites of these two proteins were detected by modeling the three-dimensional structure of the SARS_NP-hCypA complex, from which the important interaction residue pairs between the proteins were deduced. Mutagenesis experiments were carried out for validating the binding model, whose correctness was assessed by the observed effects on the binding affinities between the proteins. The reliability of the binding sites derived by the molecular modeling was confirmed by the fact that the computationally predicted values of the relative free energies of the binding for SARS_NP (or hCypA) mutants to the wild-type hCypA (or SARS_NP) are in good agreement with the data determined by SPR. Such presently observed SARS_NP-hCypA interaction model might provide a new hint for facilitating the understanding of another possible SARS-CoV infection pathway against human cell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app