COMPARATIVE STUDY
IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Regulation of synaptic inputs to paraventricular-spinal output neurons by alpha2 adrenergic receptors.

Neurons in the paraventricular nucleus (PVN) that project to the brain stem and spinal cord are important for autonomic regulation. The excitability of preautonomic PVN neurons is controlled by the noradrenergic input from the brain stem. In this study, we determined the role of alpha(2) adrenergic receptors in the regulation of excitatory and inhibitory synaptic inputs to spinally projecting PVN neurons. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were recorded using whole cell voltage-clamp techniques on PVN neurons labeled by a retrograde fluorescence tracer injected into the thoracic spinal cord of rats. Bath application of 5-20 muM clonidine, an alpha(2) receptor agonist, significantly reduced the amplitude of evoked GABAergic IPSCs in a dose-dependent manner. Also, 10 microM clonidine significantly decreased the frequency (from 2.68 +/- 0.41 to 1.22 +/- 0.40 Hz) but not the amplitude of miniature IPSCs (mIPSCs), and this effect was blocked by the alpha(2) receptor antagonist yohimbine. Furthermore, clonidine increased the paired-pulse ratio of evoked IPSCs from 1.25 +/- 0.05 to 1.61 +/- 0.08 (P < 0.05). On the other hand, clonidine had little effect on evoked glutamatergic EPSCs, mEPSCs, and the paired-pulse ratio of evoked EPSCs in most labeled cells examined. Additionally, immunofluorescence labeling revealed that the alpha(2A) receptor and GABA immunoreactivities were co-localized in close apposition to labeled PVN neurons. Collectively, these data suggest that stimulation of alpha(2) adrenergic receptors primarily attenuates GABAergic inputs to PVN output neurons to the spinal cord. The presynaptic alpha(2) receptors function as heteroreceptors to modulate synaptic GABA release and contribute to the hypothalamic regulation of sympathetic outflow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app