JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Tbx2 represses expression of Connexin43 in osteoblastic-like cells.

Tbx2 belongs to a family of developmental transcription regulatory factors. We evaluated whether the gap junction protein Connexin43 (Cx43), an important regulator of osteoblast function and bone development, may be a downstream target gene regulated by Tbx2. The Cx43 promoter contains direct repeats of the consensus T-box binding motif, TCACAC, and moreover, Tbx2 and Cx43 show overlapping expression domains in precursors to bone and in osteoblasts. In vitro analysis showed that the Cx43 promoter contains two Tbx2 binding sites, and this binding was dependent on the TCACAC consensus sequence. Transient transfection analysis with a Cx43 promoter-driven lacZ reporter construct revealed negative regulation mediated by these two Tbx2 binding sites in osteoblast-like cells. Thus, downregulation of Tbx2 led to de-repression of wild-type Cx43 promoter activity, whereas a promoter construct with mutated binding sites showed no de-repression. In stably transfected osteosarcoma cells in which expression of the endogenous Tbx2 gene was downregulated with a Tbx2 antisense construct, a marked de-repression of the endogenous Cx43 gene was observed. This was accompanied by a marked increase in the abundance of Cx43 gap junctions and increased functional gap junction-mediated cell-cell communication. Analysis of lacZ expression in transgenic mice containing the mutated Cx43 promoter-driven lacZ construct further suggested de-repression of the Cx43 promoter in limb buds, a region destined to give rise to long bones of the limbs. Taken together, these findings indicate that the promoter of Cx43 is repressible by Tbx2, both in cultured osteoblast-like cells in vitro and likely in the developing embryo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app