JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of NF-kappaB and p38 MAP kinase signaling pathways in the lipopolysaccharide-dependent activation of heme oxygenase-1 gene expression.

Heme oxygenase (HO)-1 is the inducible isoform of the rate-limiting enzyme of heme degradation, which is up-regulated by a host of stress stimuli. The bacterial cell membrane component lipopolysaccharide (LPS) is a prototypical activator of monocytic cells. Here, it is shown that LPS induced the endogenous HO-1 gene expression in RAW264.7 monocytic cells. To investigate the molecular mechanisms of HO-1 gene induction by LPS, we performed transfection experiments with reporter gene constructs containing sequences of the proximal rat HO-1 gene promoter. Deletion and mutation analysis indicated that a cyclic AMP response element/activator protein-1 site (-664/-657), but not an E-box motif (-47/-42), played a major role for LPS-dependent HO-1 gene induction. Up-regulation of HO-1 promoter activity by LPS was decreased by pharmacological nuclear factor-kappaB (NF-kappaB) inhibitors and by cotransfected expression vectors with dominant negative isoforms of NF-kappaB-inducing kinase, inhibitor of NF-kappaB (IkappaB) kinase beta, and IkappaBalpha. Moreover, the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 and overexpressed dominant negative p38beta decreased, whereas dominant negative p38delta increased, LPS-dependent induction of HO-1 gene expression. The results suggest that the NF-kappaB and p38 MAPK signaling pathways mediate the LPS-dependent induction of HO-1 gene expression via DNA sequences of the proximal promoter region.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app