Add like
Add dislike
Add to saved papers

Ultrafast aggregate-to-aggregate energy transfer within self-assembled light-harvesting columns of zinc phthalocyanine tetrakis(perylenediimide).

Light harvesting in photosynthetic antenna proteins involves a series of highly efficient ultrafast energy transfers between spectroscopically different populations of chlorophylls. Several strategies have recently been employed to mimic this natural energy transfer process, including polymers, dendrimers, and oligomeric porphyrin arrays linked by covalent bonds or by self-assembly. In all of these systems, excitation energy transfer occurs from one molecule to another, while very few of them involve energy transfer from one very strongly interacting chromophore aggregate to another such aggregate. Here we report the synthesis and characterization of a covalent zinc phthalocyanine-2,3,9,10,16,17,23,24-octacarboxytetraimide in which all four imide nitrogen atoms are substituted with N-octyl-N'-(4-aminophenyl)-1,7(3',5'di-tert-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (ZnPcIm4-PDI4). The individual molecules self-assemble into stacked heptamers in solution as evidenced by small-angle X-ray scattering and form long fibrous structures in the solid as evidenced by TEM. The ZnPcIm4 and PDI molecules both stack in register with the same components in an adjacent covalent building block. Ultrafast energy transfer occurs with tau = 1.3 ps from the aggregated peripheral PDI chromophores to the core ZnPcIm4 chromophore aggregate. Exciton hopping between the ZnPcIm4 chromophores occurs with tau = 160 fs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app