JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Thioredoxin-1 ameliorates myosin-induced autoimmune myocarditis by suppressing chemokine expressions and leukocyte chemotaxis in mice.

Circulation 2004 September 8
BACKGROUND: Cardiac myosin-induced myocarditis is an experimental autoimmune myocarditis (EAM) model used to investigate autoimmunological mechanisms in inflammatory heart diseases and resembles fulminant myocarditis in humans. We investigated the therapeutic role of thioredoxin-1 (TRX-1), a redox-regulatory protein with antioxidant and antiinflammatory effects, in murine EAM.

METHODS AND RESULTS: EAM was generated in 5-week-old male BALB/c mice by immunization with porcine cardiac myosin at days 0 and 7. Recombinant human TRX-1 (rhTRX-1), C32S/C35S mutant rhTRX-1, or saline was administered intraperitoneally every second day from day 0 to 20. In addition, rabbit anti-mouse TRX-1 serum or normal rabbit serum was administered intraperitoneally on days -1, 2, and 6. Animals were euthanized on day 21. Histological analysis of the heart showed that TRX-1 significantly reduced the severity of EAM, whereas mutant TRX-1 failed to have such an effect, and anti-TRX-1 antibody enhanced the disease markedly. Immunohistochemical analysis showed that TRX-1 significantly suppressed cardiac macrophage inflammatory protein (MIP)-1alpha, MIP-2, and 8-hydroxydeoxyguanosine expression and macrophage infiltration into the heart in EAM. Although serum levels of MIP-1alpha were not suppressed by TRX-1 until day 21, both an in vitro chemotaxis chamber assay and an in vivo air pouch model showed that TRX-1 significantly suppressed MIP-1alpha- or MIP-2-induced leukocyte chemotaxis. However, real-time reverse transcription-polymerase chain reaction showed that TRX-1 failed to decrease chemokine receptor expression increased in the bone marrow cells of EAM mice.

CONCLUSIONS: TRX-1 attenuates EAM by suppressing chemokine expressions and leukocyte chemotaxis in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app