COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Effect of voluntary contraction intensity on the H-reflex and V-wave responses.

Neuroscience Letters 2004 September 10
This study examined the evolution of H-reflex and V-wave responses of soleus muscle during maximal voluntary plantar-flexor contraction. We also investigated the relationship between the V response and force level and between V-wave during maximal voluntary contraction (MVC) and the maximal H reflex at rest. The H-reflex and the V-wave responses are measures of motoneuron excitability and also reflect the magnitude of presynaptic inhibition on Ia afferents and the magnitude of descending motor drive. Both may be influenced by postsynaptic inhibition. Twenty male subjects participated in the study and were assigned to one of two groups. The maximal M wave (Mmax) was evoked at rest in the 20 subjects, who then performed 10 maximal voluntary contraction. During MCV performance, a stimulus was delivered at supra-maximal intensity, which allowed us to record the superimposed M wave (Msup) and V wave of the soleus muscle. These parameters were also recorded during sub-maximal contractions (20, 40, 60, 80% of one MVC) in 10 subjects. The maximal H reflex (Hmax), was evoked at rest in the other 10 subjects. These subjects then performed 10 MVC and the Hsup (superimposed H, evoked by means of stimulus at Hmax intensity) was recorded. The results show that the amplitude of maximal M wave increased during MVC (gain 44.52 +/- 10.71%). No significant difference between Hmax/Mmax at rest and the Hsup/Msup ratios during MVC was observed, while an effect of force level on the V/Msup ratio was found. V/Msup and Hmax/Mmax were linearly correlated (r2 = 0.81), but V/Msup was significantly lower (P < 0.01) than Hmax/Mmax. In conclusion, the present study shows that maximal voluntary contractions potentiate some reflex responses. The V wave, which reflects motoneuron excitability presynaptic inhibition of Ia afferents and the magnitude of descending central motor drive to spinal motoneurons, may be a relatively simple method to analyse the modulation adaptive neural alterations at spinal and supraspinal level during voluntary contractions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app