JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

A mechanistic study of the photooxidation of A2E, a component of human retinal lipofuscin.

A major constituent of human retinal lipofuscin is A2E (2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetraenyl]-1-(2-hydroxyethyl)-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-hexatrienyl]-pyridinium). Light transmitted by the lens is absorbed by A2E and the processes initiated by this absorption has been implicated in several maculopothies. The purpose of this study was to evaluate the dominant photochemical mechanisms involved in these reactions, whether through free radical or singlet oxygen intermediacy. The photodestruction of A2E occurs faster in water vs. chloroform and hydrogenated vs. perdeuterated methanol. Both results suggest a free radical mechanism. Product distributions indicate sequential oxygen addition rather than the addition of two oxygen atoms which would be expected if singlet oxygen was an intermediate. Finally, EPR trapping studies lead to the detection of superoxide as the primary intermediate in the photochemical reactions. It is concluded that if singlet oxygen is involved in these photochemical processes it is of minor importance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app