JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A highly bioactive lignophenol derivative from bamboo lignin exhibits a potent activity to suppress apoptosis induced by oxidative stress in human neuroblastoma SH-SY5Y cells.

Approaches to protection against neurodegenerative diseases, in which oxidative stress and inflammation are implicated, should be based on the current concept on the etiology of these diseases. Recently, a new therapeutic strategy has been proposed to protect neurons from cell death by attenuating the apoptotic signal transduction. Lignin, a durable aromatic network polymer second to cellulose in abundance, was able to be converted into highly active lignophenol derivatives with antioxidant activity by using our newly developed phase-separation technique. These lignophenol derivatives were found to show the potent neuroprotective activity against oxidative stress. Among the compounds examined, a lignocresol derivative from bamboo (lig-8) exhibited the most potent neuroprotective activity against hydrogen peroxide (H(2)O(2))-induced apoptosis in human neuroblastoma cell line SH-SY5Y by preventing the caspase-3 activation via either caspase-8 or caspase-9. Furthermore, it was found that lig-8 exerted the antiapoptotic effect by inhibiting dissipation of the mitochondrial membrane permeability transition induced by H(2)O(2) or by the peripheral benzodiazepin receptor ligand PK11195. Lig-8 was also shown to be potent in the antioxidant activity in the cells exposed to H(2)O(2), as assessed by flow cytometry using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and in vitro reactive oxygen species-scavenging potency. These data suggest that lig-8 is a promising neuroprotector, which affects the signaling pathway of neuronal cell death and that it would be of benefit to delay the progress of neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app