JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Minireview: GNAS: normal and abnormal functions.

Endocrinology 2004 December
GNAS is a complex imprinted gene that uses multiple promoters to generate several gene products, including the G protein alpha-subunit (G(s)alpha) that couples seven-transmembrane receptors to the cAMP-generating enzyme adenylyl cyclase. Somatic activating G(s)alpha mutations, which alter key residues required for the GTPase turn-off reaction, are present in various endocrine tumors and fibrous dysplasia of bone, and in a more widespread distribution in patients with McCune- Albright syndrome. Heterozygous inactivating G(s)alpha mutations lead to Albright hereditary osteodystrophy. G(s)alpha is imprinted in a tissue-specific manner, being primarily expressed from the maternal allele in renal proximal tubules, thyroid, pituitary, and ovary. Maternally inherited mutations lead to Albright hereditary osteodystrophy (AHO) plus PTH, TSH, and gonadotropin resistance (pseudohypoparathyroidism type 1A), whereas paternally inherited mutations lead to AHO alone. Pseudohypoparathyroidism type 1B, in which patients develop PTH resistance without AHO, is almost always associated with a GNAS imprinting defect in which both alleles have a paternal-specific imprinting pattern on both parental alleles. Familial forms of the disease are associated with a mutation within a closely linked gene that deletes a region that is presumably required for establishing the maternal imprint, and therefore maternal inheritance of the mutation results in the GNAS imprinting defect. Imprinting of one differentially methylated region within GNAS is virtually always lost in pseudohypoparathyroidism type 1B, and this region is probably responsible for tissue-specific G(s)alpha imprinting. Mouse knockout models show that G(s)alpha and the alternative G(s)alpha isoform XLalphas that is expressed from the paternal GNAS allele may have opposite effects on energy metabolism in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app