Add like
Add dislike
Add to saved papers

Ligand-dependent coactivation of the human bile acid receptor FXR by the peroxisome proliferator-activated receptor gamma coactivator-1alpha.

Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) has been shown to play an important role in energy metabolism by coordinating transcriptional programs involved in mitochondrial biogenesis, adaptive thermogenesis, gluconeogenesis, and fatty acid oxidation. PGC-1alpha also plays a crucial role in cholesterol metabolism by serving as a coactivator of the liver X receptor-alpha and inducing the expression of cholesterol 7-alpha-hydroxylase. Here, we demonstrate that PGC-1alpha also functions as an effective coactivator of farnesoid X receptor (FXR), the bile acid receptor. Transient cotransfection assays demonstrate that PGC-1alpha enhances ligand-mediated FXR transcription when either full-length FXR or Gal4 DNA binding domain-FXR-ligand binding domain chimeras were analyzed. Mammalian two-hybrid analyses, glutathione S-transferase affinity chromatography and biochemical coactivator recruitment assays demonstrate ligand-dependent interaction between the two proteins both in vivo and in vitro. PGC-1alpha-mediated coactivation of FXR was highly ligand-dependent and absolutely required an intact activation function-2 (AF-2) domain of FXR and the LXXLL motif in PGC-1alpha. The integrity of the charge clamp was required, further illustrating the role of the ligand binding domain of FXR in PGC-1alpha recognition. Together, these results indicate that PGC-1alpha functions as a potent coactivator for FXR and further implicates its role in the regulation of genes that are involved in bile acid and lipid metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app