Effects of vitamin D compounds on renal and intestinal Ca2+ transport proteins in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice

Joost G J Hoenderop, Annemiete W C M van der Kemp, Colleen M Urben, Stephen A Strugnell, René J M Bindels
Kidney International 2004, 66 (3): 1082-9

BACKGROUND: Vitamin D compounds are used clinically to control secondary hyperparathyroidism (SHPT) due to renal failure. Newer vitamin D compounds retain the suppressive action of 1,25(OH)(2)D(3) on the parathyroid glands and may have less Ca(2+)-mobilizing activity, offering potentially safer therapies.

METHODS: This study investigated the effect of a single dose of compound (1,25(OH)(2)D(3), 1,24(OH)(2)D(2), or 1alpha(OH)D(2)) on renal and intestinal Ca(2+) transport proteins, including TRPV5 and TRPV6, and serum Ca(2+), in a novel SHPT model, the 25-OH-D(3)-1alpha-hydroxylase knockout mouse, which lacks endogenous 1,25(OH)(2)D(3) and is severely hypocalcemic. Animals were injected intraperitoneally with compound (100 ng/mouse).

RESULTS: Serum levels of 1,25(OH)(2)D(3) and 1,24(OH)(2)D(2) peaked at four hours post-injection (pi), then declined rapidly. 1,25(OH)(2)D(2) generated from 1alpha(OH)D(2) peaked at 12 hours pi and then remained stable. Serum Ca(2+) was increased to near-normal within four hours by 1,25(OH)(2)D(3) and 1,24(OH)(2)D(2), and within 12 hours by 1alpha(OH)D(2). 1,25(OH)(2)D(3) and 1,24(OH)(2)D(2) up-regulated duodenal TRPV5 and TRPV6 mRNA to a similar degree within four hours; mRNA levels decreased by 12 hours after 1,24(OH)(2)D(2) treatment, and by 24 hours after 1,25(OH)(2)D(3) treatment. 1,25(OH)(2)D(3) increased kidney levels of TRPV5, calbindin-D(28K), and calbindin-D(9K) mRNA within four hours; 1,24(OH)(2)D(2) did not change kidney TRPV5 levels and modestly increased calbindin D(9K) by 48 hours. 1alpha(OH)D(2) produced later-onset effects, increasing duodenal TRPV6 and calbindin-D(9K) mRNA levels by 12 hours and TRPV5 by 48 hours.

CONCLUSION: In kidney, 1alpha(OH)D(2) increased TRPV5, calbindin-D(28K), and calbindin-D(9K) mRNA levels by 12 hours. This study indicates that Ca(2+) transport proteins, including TRPV5 and TRPV6, are differentially up-regulated by vitamin D compounds.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"