JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intracellularly expressed TLR2s and TLR4s contribution to an immunosilent environment at the ocular mucosal epithelium.

Journal of Immunology 2004 September 2
Epithelial cells are key players in the first line of defense offered by the mucosal immune system against invading pathogens. In the present study we sought to determine whether human corneal epithelial cells expressing Toll-like receptors (TLRs) function as pattern-recognition receptors in the innate immune system and, if so, whether these TLRs act as a first line of defense in ocular mucosal immunity. Incubation of human primary corneal epithelial cells and the human corneal epithelial cell line (HCE-T) with peptidoglycan or LPS did not lead to activation, at the level of DNA transcription, of NF-kappaB or the secretion of inflammation-associated molecules such as IL-6, IL-8, and human beta-defensin-2. However, when incubated with IL-1alpha to activate NF-kappaB, the production by these cells of such inflammatory mediators was enhanced. Human corneal epithelial cells were observed to express both TLR2- and TLR4-specific mRNA as well as their corresponding proteins intracellularly, but not at the cell surface. However, even when LPS was artificially introduced into the cytoplasm, it did not lead to the activation of epithelial cells. Taken together, our results demonstrate that the intracellular expression of TLR2 and TLR4 in human corneal epithelial cells fails to elicit innate immune responses and therefore, perhaps purposely, contributes to an immunosilent environment at the ocular mucosal epithelium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app