COMPARATIVE STUDY
EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Catabolism of 4-fluoro-3-iodobenzylguanidine and meta-iodobenzylguanidine by SK-N-SH neuroblastoma cells.

BACKGROUND: A fluorine substituted derivative of meta-iodobenzylguanidine (MIBG), 4-fluoro-3-iodobenzylguanidine (FIBG), is retained in SK-N-SH human neuroblastoma cells in vitro to a higher degree than the MIBG.

METHOD: To investigate whether the higher retention of FIBG is due to differences in the catabolic degradation of the two tracers, in vitro paired-label studies were performed using SK-N-SH cells.

RESULTS: No detectable amount of benzyl amines, benzoic acids or hippuran derivatives, potential catabolites of these tracers, were seen in either case. Even after 48 h, the cell culture supernatants contained exclusively intact I-MIBG and I-FIBG. In contrast, in some cases, HPLC analysis of cell lysates indicated the presence of a very polar compound(s) as the predominant species with smaller quantities of intact tracers. The per cent total radioactivity in the lysate at each time point that was associated with intact I-FIBG was (average [range]) 25.4% [20.3-30.5], 22.5% [19.3-25.6], and 18.8% [14.3-23.3], at 0 h, 24 h and 48 h, respectively. The corresponding values for I-MIBG were 24.3% [21.0-27.5], 19.1% [11.7-26.5] and 17.4% [14.6-20.1]. No significant amount of activity was associated with high molecular weight species for either halobenzylguanidine, indicating that protein binding was not a major factor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app