JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Manipulation of dietary carbohydrate and muscle glycogen affects glucose uptake during exercise when fat oxidation is impaired by beta-adrenergic blockade.

We have recently reported that, during moderate intensity exercise, low muscle glycogen concentration and utilization caused by a high-fat diet is associated with a marked increase in fat oxidation with no effect on plasma glucose uptake (R(d) glucose). It is our hypothesis that this increase in fat oxidation compensates for low muscle glycogen, thus preventing an increase in R(d) glucose. Therefore, the purpose of this study was to determine whether low muscle glycogen availability increases R(d) glucose under conditions of impaired fat oxidation. Six cyclists exercised at 50% peak O(2) consumption (Vo(2 peak)) for 1 h after 2 days on either a high-fat (HF, 60% fat, 24% carbohydrate) or control (CON, 22% fat, 65% carbohydrate) diet to manipulate muscle glycogen to low and normal levels, respectively. Two hours before the start of exercise, subjects ingested 80 mg of propanolol (betaB), a nonselective beta-adrenergic receptor blocker, to impair fat oxidation during exercise. HF significantly decreased calculated muscle glycogen oxidation (P < 0.05), and this decrease was partly compensated for by an increase in fat oxidation (P < 0.05), accompanied by an increase in whole body lipolysis (P < 0.05), despite the presence of betaB. Although HF increased fat oxidation, plasma glucose appearance rate, R(d) glucose, and glucose clearance rate were also significantly increased by 13, 15, and 26%, respectively (all P < 0.05). In conclusion, when lipolysis and fat oxidation are impaired, in this case by betaB, fat oxidation cannot completely compensate for a reduction in muscle glycogen utilization, and consequently plasma glucose turnover increases. These findings suggest that there is a hierarchy of substrate compensation for reduced muscle glycogen availability after a high-fat, low-carbohydrate diet, with fat being the primary and plasma glucose the secondary compensatory substrate. This apparent hierarchy likely serves to protect against hypoglycemia when endogenous glucose availability is low.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app