COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Poly (ADP) ribose synthetase inhibition reduces obliterative airway disease in rat tracheal allografts.

BACKGROUND: Obliterative bronchiolitis (OB) is the major long-term complication affecting lung transplant recipients, and is characterized pathologically by chronic inflammatory and fibroproliferative airway disease. Based on studies revealing anti-inflammatory and anti-apoptotic properties of poly (ADP)-ribose synthetase (PARS) inhibitors, we hypothesized that their administration would be protective in a heterotopic model of experimental OB.

METHODS: We transplanted rat tracheas from Brown-Norway donors into Lewis recipients, and treated 2 groups with a novel PARS inhibitor, INO-1001. One group received 14 days of treatment, whereas a second received delayed treatment beginning on Day 7 post-transplant. Tracheas were analyzed by light microscopy and computerized morphometry. Effects on cytokine transcription, nuclear transcription factor activation and cellular death were assessed by in situ hybridization for tumor necrosis factor-alpha (TNF-alpha), electromobility shift assays for nuclear factor-kappaB (NF-kappaB) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays, respectively.

RESULTS: PARS inhibition significantly decreased luminal obstruction (p < 0.001) and enhanced preservation of epithelial lining (p < 0.001) at 14 days post-transplant. Day 7 controls confirmed the development of an obstructive lesion in the lumen, averaging 28% occlusion. Delayed treatment (beginning on Day 7) arrested (p < 0.001) progression of the established lesion. Allograft airways treated with INO-1001 demonstrated attenuated NF-kappaB nuclear translocation, reduced transcription of TNF-alpha mRNA, and decreased cellular death on TUNEL and caspase 3 staining.

CONCLUSIONS: PARS inhibition is anti-inflammatory, protects against experimental OB, and is associated with enhanced preservation of respiratory epithelium and decreased cellular death. Delayed treatment with INO-1001 arrests progression of the lesion developed by Day 7. These studies suggest that activation of PARS plays a critical role in the development of airway obliterative disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app