Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3.

Human embryonic stem cells will remain undifferentiated or undergo differentiation when grown in conditioned or non-conditioned medium, respectively. The factors and signaling events that control the maintenance of the undifferentiated state are not well characterized and their identification is of major importance. Based on the data from global expression analyses, we set out to identify genes and the signaling pathways controlling them that are regulated in the early phase of the differentiation process. This study shows that nodal and the inhibitors of Nodal signaling, lefty-A and lefty-B, are down-regulated very early upon differentiation. High expression of these genes in undifferentiated cells is maintained by activation of the transcription factor Smad2/3, downstream of the activin-linked kinases (ALK) 4/5/7. Treatment of differentiating cells with Activin A leads to activation of Smad2/3 and expression of nodal, lefty-A and lefty-B, while inhibition of ALK4/5/7 by the kinase inhibitor SB-431542 blocks activation of Smad2/3 and expression of these genes in the undifferentiated state. In addition, when cells are maintained undifferentiated by treatment with the GSK3-inhibitor, BIO, high expression of nodal, lefty-A, and lefty-B also requires activation of ALK4/5/7. Conversely, BMP signaling leading to Smad1/5/8 activation via ALK2/3/6 is blocked in undifferentiated cells and becomes activated upon differentiation. Taken together, these observations establish that Smad2/3 is activated in undifferentiated hESCs and required for the expression of genes controlling Nodal signaling. Moreover, there appears to be cross-talk between inhibition of GSK3, a hallmark of Wnt signaling and the Activin/Nodal pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app