JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana.

For almost 200 years scientists have been fascinated by the ornate cell walls of the diatoms. These structures are made of amorphous silica, exhibiting species-specific, mostly porous patterns in the nano- to micrometer range. Recently, from the diatom Cylindrotheca fusiformis unusual phosphoproteins (termed silaffins) and long chain polyamines have been identified and implicated in biosilica formation. However, analysis of the role of silaffins in morphogenesis of species-specific silica structures has so far been hampered by the difficulty of obtaining structural data from these extremely complex proteins. In the present study, the five major silaffins from the diatom Thalassiosira pseudonana (tpSil1H, -1L, -2H, -2L, and -3) have been isolated, functionally analyzed, and structurally characterized, mak- ing use of the recently available genome data from this organism. Surprisingly, the silaffins of T. pseudonana and C. fusiformis share no sequence homology but are similar regarding amino acid composition and post-translational modifications. Silaffins tpSil1H and -2H are higher molecular mass isoforms of tpSil1L and -2L, respectively, generated in vivo by alternative processing of the same precursor polypeptides. Interestingly, only tpSil1H and -2H but not tpSil1L and -2L induce the formation of porous silica patterns in vitro, suggesting that the alternative processing event is an important step in morphogenesis of T. pseudonana biosilica.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app