COMPARATIVE STUDY
JOURNAL ARTICLE

Tbx5 and Tbx4 transcription factors interact with a new chicken PDZ-LIM protein in limb and heart development

Ange Krause, William Zacharias, Troy Camarata, Barbara Linkhart, Evelyn Law, Antje Lischke, Erik Miljan, Hans-Georg Simon
Developmental Biology 2004 September 1, 273 (1): 106-20
15302601
The T-domain transcription factors, Tbx5 and Tbx4, play important roles in vertebrate limb and heart development. To identify interacting and potential Tbx-regulating proteins, we performed a yeast two-hybrid screen with the C-terminal domain of Tbx5 as bait. We identified a new PDZ-LIM protein composed of one N-terminal PDZ and three C-terminal LIM domains, which we named chicken LMP-4. Among the Tbx2, 3, 4, 5 subfamily, we observed exclusive interaction with Tbx5 and Tbx4 proteins. Tbx3 nor Tbx2 can substitute for LMP-4 binding. While chicken LMP-4 associates with Tbx5 or Tbx4, it uses distinct LIM domains to bind to the individual proteins. Subcellular co-localization of LMP-4 and Tbx proteins supports the protein interaction and reveals interference of LMP-4 with Tbx protein distribution, tethering the transcription factors to the cytoskeleton. The protein-protein interaction indicates regulation of Tbx function at the level of transcription factor nuclear localization. During chicken limb and heart development, Tbx5/LMP-4 and Tbx4/LMP-4 are tightly co-expressed in a temporal and spatial manner, suggesting that they operate in the same pathway. Surprisingly, chicken LMP-4 expression domains outside those of Tbx5 in the heart led to the discovery of Tbx4 expression in the outflow tract and the right ventricle of this organ. The Tbx4-expressing cells coincide with those of the recently discovered secondary anterior heart-forming field. The discrete posterior or anterior expression domains in the heart and the exclusive fore- or hindlimb expression of Tbx5 and Tbx4, respectively, suggest common pathways in the heart and limbs. The identification of a new Tbx5/4-specific binding factor further suggests a novel mechanism for Tbx transcription factor regulation in development and disease.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15302601
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"