JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A concentrated aglycone isoflavone preparation (GCP) that demonstrates potent anti-prostate cancer activity in vitro and in vivo.

PURPOSE: Isoflavones have anticancer activities, but naturally occurring isoflavones are predominantly glycosylated and poorly absorbed. Genistein combined polysaccharide (GCP; Amino Up Chemical Co., Sapporo, Japan), is a fermentation product of soy extract and basidiomycetes mycillae that is enriched in biologically active aglycone isoflavones. This study analyzes GCP in vitro and in vivo for potential utility as a prostate cancer chemopreventative agent.

EXPERIMENTAL DESIGN: Androgen-sensitive LNCaP and androgen-independent PC-3 cells were grown with various concentrations of GCP. In vitro cell growth was analyzed by the WST-1 assay, and apoptosis was assessed by fluorescence-activated cell sorting and detection of poly(ADP-ribose) polymerase cleavage using Western blot techniques. Effects of GCP on expression of cell cycle-regulatory proteins p53 (LNCaP only), p21, and p27 and the protein kinase Akt were considered using Western blot techniques. An in vivo LNCaP xenograft model was used to study the effects of a 2% GCP-supplemented diet on tumor growth in comparison with a control diet.

RESULTS: GCP significantly suppressed LNCaP and PC-3 cell growth over 72 h (89% and 78% in LNCaP and PC-3, respectively, at 10 microg/ml; P < 0.0001). This reduction was associated with apoptosis in LNCaP cells, but not in PC-3 cells. GCP induced p27 and p53 (LNCaP only) protein expression within 6 h and suppressed phosphorylated Akt in both cell lines. The 2% GCP-supplemented diet significantly slowed LNCaP tumor growth, increasing apoptosis (P < 0.001), and decreasing proliferation (P < 0.001) over 4 weeks.

CONCLUSIONS: GCP has potent growth-inhibitory effects against prostate cancer cell lines in vitro and in vivo. These data suggest GCP has potential as an effective chemopreventive agent against prostate cancer cell growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app