Add like
Add dislike
Add to saved papers

Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3.

PURPOSE: Mutant FLT-3 receptor tyrosine kinase is a client protein of the molecular chaperone heat shock protein 90 and is commonly present and contributes to the leukemia phenotype in acute myelogenous leukemia (AML). LAQ824, a cinnamyl hydroxamate histone deacetylase inhibitor, is known to induce acetylation and inhibition of heat shock protein 90. Here, we determined the effects of LAQ824 and/or PKC412 (a FLT-3 kinase inhibitor) on the levels of mutant FLT-3 and its downstream signaling, as well as growth arrest and cell-death of cultured and primary human AML cells.

EXPERIMENTAL DESIGN: The effect of LAQ824 and/or PKC412 treatment was determined on the levels of FLT-3 and phosphorylated (p)-FLT-3, on downstream pro-growth and pro-survival effectors, e.g., p-STAT5, p-AKT, and p-extracellular signal-regulated kinase (ERK) 1/2, and on the cell cycle status and apoptosis in the cultured MV4-11 and primary AML cells with mutant FLT-3.

RESULTS: Treatment with LAQ824 promoted proteasomal degradation and attenuation of the levels of FLT-3 and p-FLT-3, associated with cell cycle G(1)-phase accumulation and apoptosis of MV4-11 cells. This was accompanied by attenuation of p-STAT5, p-AKT, and p-ERK1/2 levels. STAT-5 DNA-binding activity and the levels of c-Myc and oncostatin M were also down-regulated. Cotreatment with LAQ824 and PKC412 synergistically induced apoptosis of MV4-11 cells and induced more apoptosis of the primary AML cells expressing mutant FLT-3. This was also associated with more attenuation of p-FLT-3, p-AKT, p-ERK1/2, and p-STAT5.

CONCLUSIONS: The combination of LAQ824 and PKC412 is highly active against human AML cells with mutant FLT-3, which merits in vivo studies of the combination against human AML.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app