CLINICAL TRIAL
COMPARATIVE STUDY
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of salmeterol on the ventilatory response to exercise in chronic obstructive pulmonary disease.

This study examined the effects of bronchodilator-induced reductions in lung hyperinflation on breathing pattern, ventilation and dyspnoea during exercise in chronic obstructive pulmonary disease (COPD). Quantitative tidal flow/volume loop analysis was used to evaluate abnormalities in dynamic ventilatory mechanics and their manipulation by a bronchodilator. In a randomised double-blind crossover study, 23 patients with COPD (mean +/- SEM forced expiratory volume in one second 42 +/- 3% of the predicted value) inhaled salmeterol 50 microg or placebo twice daily for 2 weeks each. After each treatment period, 2 h after dose, patients performed pulmonary function tests and symptom-limited cycle exercise at 75% of their maximal work-rate. After salmeterol versus placebo at rest, volume-corrected maximal expiratory flow rates increased by 175 +/- 52%, inspiratory capacity (IC) increased by 11 +/- 2% pred and functional residual capacity decreased by 11 +/- 3% pred. At a standardised time during exercise, salmeterol increased IC, tidal volume (VT), mean inspiratory and expiratory flows, ventilation, oxygen uptake (VO2) and carbon dioxide output. Salmeterol increased peak exercise endurance, VO2 and ventilation by 58 +/- 19, 8 +/- 3 and 12 +/- 3%, respectively. Improvements in peak VO2 correlated best with increases in peak VT; increases in peak VT and resting IC were interrelated. The reduction in dyspnoea ratings at a standardised time correlated with the increased VT. Mechanical factors play an important role in shaping the ventilatory response to exercise in chronic obstructive pulmonary disease. Bronchodilator-induced lung deflation reduced mechanical restriction, increased ventilatory capacity and decreased respiratory discomfort, thereby increasing exercise endurance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app