Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

WY-14643 and 9- cis-retinoic acid induce IRS-2/PI 3-kinase signalling pathway and increase glucose transport in human skeletal muscle cells: differential effect in myotubes from healthy subjects and Type 2 diabetic patients.

Diabetologia 2004 July
AIMS/HYPOTHESIS: To determine the effects of peroxisome proliferator-activated receptor alpha (PPARalpha) and retinoid X receptor (RXR) agonists on insulin action, we investigated the effects of Wy-14643 and 9- cis-retinoic acid (9- cis-RA) on insulin signalling and glucose uptake in human myotubes.

METHODS: Primary cultures of differentiated human skeletal muscle cells, established from healthy subjects and Type 2 diabetic patients, were used to study the effects of Wy-14643 and 9- cis-RA on the expression and activity of proteins involved in the insulin signalling cascade. Glucose transport was assessed by measuring the rate of [(3)H]2-deoxyglucose uptake.

RESULTS: Wy-14643 and 9- cis-RA increased IRS-2 and p85alpha phosphatidylinositol 3-kinase (PI 3-kinase) mRNA and protein expression in myotubes from non-diabetic and Type 2 diabetic subjects. This resulted in increased insulin stimulation of protein kinase B phosphorylation and increased glucose uptake in cells from control subjects. Myotubes from diabetic patients displayed marked alterations in the stimulation by insulin of the IRS-1/PI 3-kinase pathway. These alterations were associated with blunted stimulation of glucose transport. Treatment with Wy-14643 and 9- cis-RA did not restore these defects but increased the basal rate of glucose uptake.

CONCLUSIONS/INTERPRETATION: These results demonstrate that PPARalpha and RXR agonists can directly affect insulin signalling in human muscle cells. They also indicate that an increase in the IRS-2/PI 3-kinase pathway does not overcome the impaired stimulation of the IRS-1-dependent pathway and does not restore insulin-stimulated glucose uptake in myotubes from Type 2 diabetic patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app