COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Effect of formulation composition on the properties of controlled release tablets prepared by roller compaction.

This study discusses the effect of formulation composition on the physical characteristics and drug release behavior of controlled-release formulations made by roller compaction. The authors used mixture experimental design to study the effect of formulation components using diclofenac sodium as the model drug substance and varying relative amounts of microcrystalline cellulose (Avicel), hydroxypropyl methylcellulose (HPMC), and glyceryl behenate (Compritol). Dissolution studies revealed very little variability in drug release. The t70 values for the 13 formulations were found to vary between 260 and 550 min. A reduced cubic model was found to best fit the t70 data and gave an adjusted r-square of 0.9406. Each of the linear terms, the interaction terms between Compritol and Avicel and between all three of the tested factors were found to be significant. The longest release times were observed for formulations having higher concentrations of HPMC or Compritol. Tablets with higher concentrations of Avicel showed reduced ability to retard the release of the drug from the tablet matrix. Crushing strength showed systematic dependence on the formulation factors and could be modeled using a reduced quadratic model. The crushing strength values were highest at high concentrations of Avicel, while tablets with a high level of Compritol showed the lowest values. A predicted optimum formulation was derived by a numerical, multiresponse optimization technique. The validity of the model for predicting physical attributes of the product was also verified by experiment. The observed responses from the calculated optimum formulation were in very close agreement with values predicted by the model. The utility of a mixture experimental design for selecting formulation components of a roller compacted product was demonstrated. These simple statistical tools can allow a formulator to rationally select levels of various components in a formulation, improve the quality of products, and develop more robust processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app