JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Donor antigen-presenting cells regulate T-cell expansion and antitumor activity after allogeneic bone marrow transplantation.

Delayed immunologic recovery after allogeneic bone marrow transplantation (BMT) represents a major cause of morbidity and mortality that limits the overall success of the transplantation procedure. Recent clinical data suggest that a subset of donor dendritic cells may inhibit the graft-versus-tumor activity of donor T cells. We studied the immunoregulatory activity of donor dendritic cells in allogeneic BMT between major histocompatibility complex-disparate strains of mice. Bone marrow grafts enriched or depleted of CD11b- and CD11b+ dendritic cell subsets by immunomagnetic cell sorting were combined with small numbers of congenic splenic T cells. Recipients of CD11b-depleted bone marrow had significant posttransplantation expansion of donor spleen-derived CD4+ memory T cells compared with recipients of unmanipulated bone marrow. CD11b depletion enhanced the antitumor activity of the splenic donor T cells without producing significant graft-versus-host disease and resulted in long-term survival after a supralethal dose of T-cell leukemia administered after BMT. Expansion of donor spleen-derived T cells was proportional to the number of CD11b- dendritic cells in the bone marrow graft and was associated with increased levels of serum interferon-gamma. Thus, manipulating the content of donor antigen-presenting cells in allogeneic BMT is a novel strategy to activate donor memory T cells and enhance allogeneic graft-versus-leukemia effects with minimal graft-versus-host disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app