OPEN IN READ APP
JOURNAL ARTICLE

Highly luminescent, triple- and quadruple-stranded, dinuclear Eu, Nd, and Sm(III) lanthanide complexes based on bis-diketonate ligands

Andrew P Bassett, Steven W Magennis, Peter B Glover, David J Lewis, Neil Spencer, Simon Parsons, René M Williams, Luisa De Cola, Zoe Pikramenou
Journal of the American Chemical Society 2004 August 4, 126 (30): 9413-24
15281834
The bis(beta-diketone) ligands 1,3-bis(3-phenyl-3-oxopropanoyl)benzene, H(2)L(1) and 1,3-bis(3-phenyl-3-oxopropanoyl) 5-ethoxy-benzene, H(2)L(2), have been prepared for the examination of dinuclear lanthanide complex formation and investigation of their properties as sensitizers for lanthanide luminescence. The ligands bear two conjugated diketonate binding sites linked by a 1,3-phenylene spacer. The ligands bind to lanthanide(III) or yttrium(III) ions to form neutral homodimetallic triple stranded complexes [M(2)L(1)(3)] where M = Eu, Nd, Sm, Y, Gd and [M(2)L(2)(3)], where M = Eu, Nd or anionic quadruple-stranded dinuclear lanthanide units, [Eu(2)L(1)(4)](2-). The crystal structure of the free ligand H(2)L(1) has been determined and shows a twisted arrangement of the two binding sites around the 1,3-phenylene spacer. The dinuclear complexes have been isolated and fully characterized. Detailed NMR investigations of the complexes confirm the formation of a single complex species, with high symmetry; the complexes show clear proton patterns with chemical shifts of a wide range due to the lanthanide paramagnetism. Addition of Pirkle's reagent to solutions of the complexes leads to splitting of the peaks, confirming the chiral nature of the complexes. Electrospray and MALDI mass spectrometry have been used to identify complex formulation and characteristic isotope patterns for the different lanthanide complexes have been obtained. The complexes have high molar absorption coefficients (around 13 x 10(4) M(-1)cm(-1)) and display strong visible (red or pink) or NIR luminescence upon irradiation at the ligand band around 350 nm, depending on the choice of the lanthanide. Emission quantum yield experiments have been performed and the luminescence signals of the dinuclear complexes have been found to be up to 11 times more intense than the luminescence signals of the mononuclear analogues. The emission quantum yields and the luminescence lifetimes are determined to be 5% and 220 micros for [Eu(2)L(1)(3)], 0.16% and 13 micros for [Sm(2)L(1)(3)], and 0.6% and 1.5 micros for [Nd(2)L(1)(3)]. The energy level of the ligand triplet state was determined from the 77 K spectrum of [Gd(2)L(1)(3)]. The bis-diketonate ligand is shown to be an efficient sensitizer, particularly for Sm and Nd. Photophysical studies of the europium complexes at room temperature and 77 K show the presence of a thermally activated deactivation pathway, which we attribute to ligand-to-metal charge transfer (LMCT). Quenching of the luminescence from this level seems to be operational for the Eu(III) complex but not for complexes of Sm(III) and Nd(III), which exhibit long lifetimes. The quadruple-stranded europium complex has been isolated and characterized as the piperidinium salt of [Eu(2)L(1)(4)](2-). Compared with the triple-stranded Eu(III) complex in the solid state, the quadruple-stranded complex displays a more intense emission signal with a distinct emission pattern indicating the higher symmetry of the quadruple-stranded complex.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Trending on Read

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
15281834
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"