JOURNAL ARTICLE
REVIEW

PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development

Aline Huber, Peter Bai, Josiane Ménissier de Murcia, Gilbert de Murcia
DNA Repair 2004, 3 (8-9): 1103-8
15279798
Poly(ADP-ribosyl)ation is an immediate DNA damage-dependent posttranslational modification of histones and nuclear proteins that contributes to the survival of injured proliferating cells. Poly(ADP-ribose) polymerases (PARPs) now constitute a superfamily of 18 proteins, encoded by different genes and displaying a common conserved catalytic domain. PARP-1 (113kDa), the founding member, and PARP-2 (62kDa) are both involved in DNA-break sensing and signaling when single strand break repair (SSBR) or base excision repair (BER) pathways are engaged. The generation by homologous recombination of deficient mouse models have confirmed the caretaker function of PARP-1 and PARP-2 in mammalian cells under genotoxic stress. This review summarizes our present knowledge on their physiological role in the cellular response to DNA damage and on the genetic interactions between PARP-1, PARP-2, Atm that play an essential role during early embryogenesis.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15279798
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"