CLINICAL TRIAL
COMPARATIVE STUDY
JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Segment-interaction analysis of the stance limb in sprint running.

A high angular velocity of the thigh of the stance limb, generated by hip extensor musculature, is commonly thought to be a performance-determining factor in sprint running. However, the thigh segment is a component of a linked system (i.e., the lower limb), therefore, it is unlikely that the kinematics of the thigh will be due exclusively to the resultant joint moment (RJM) at the hip. The purpose of this study was to quantify, by means of segment-interaction analysis, the determinants of sagittal plane kinematics of the lower limb segments during the stance phase of sprint running. Video and ground reaction force data were collected from four male athletes performing maximal-effort sprints. The analysis revealed that during the first-third of the stance phase, a hip extension moment was the major determinant of the increasing angular velocity of the thigh. However, during the mid-third of stance, hip and knee extension moments and segment interaction effects all contributed to the thigh attaining its peak angular velocity. Extension moments at the ankle, and to a lesser extent the knee, were attributed with preventing the 'collapse' of the shank under the effects of the interactive moment due to ground reaction force. The angular acceleration of the foot was determined almost completely by the RJM at the ankle and the interactive moment due to ground reaction force. Further research is required to determine if similar results exit for a wide range of athletes and for other stages of a sprint race (e.g. early acceleration, maximal velocity, and deceleration phases).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app