Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Dielectrophoresis-based programmable fluidic processors.

Lab on a Chip 2004 August
Droplet-based programmable processors promise to offer solutions to a wide range of applications in which chemical and biological analysis and/or small-scale synthesis are required, suggesting they will become the microfluidic equivalents of microprocessors by offering off-the-shelf solutions for almost any fluid based analysis or small scale synthesis problem. A general purpose droplet processor should be able to manipulate droplets of different compositions (including those that are electrically conductive or insulating and those of polar or non-polar nature), to control reagent titrations accurately, and to remain free of contamination and carry over on its reaction surfaces. In this article we discuss the application of dielectrophoresis to droplet based processors and demonstrate that it can provide the means for accurately titrating, moving and mixing polar or non-polar droplets whether they are electrically conductive or not. DEP does not require contact with control surfaces and several strategies for minimizing surface contact are presented. As an example of a DEP actuated general purpose droplet processor, we show an embodiment based on a scaleable CMOS architecture that uses DEP manipulation on a 32 x 32 electrode array having built-in control and switching circuitry. Lastly, we demonstrate the concept of a general-purpose programming environment that facilitates droplet software development for any type of droplet processor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app