JOURNAL ARTICLE

Theoretical investigation of ground and excited states of the methylene amidogene radical (H(2)CN)

Wolfgang Eisfeld
Journal of Chemical Physics 2004 April 1, 120 (13): 6056-63
15267489
The excited states and the absorption spectrum of the methylene amidogene radical are studied by high-level ab initio calculations. The multireference configuration interaction method was used in combination with different basis sets and basis set extrapolation to compute equilibrium geometries, harmonic frequencies, and excitation energies of the four lowest doublet electronic states of the title species. Potential curves and transition dipole moment functions were determined along the normal mode coordinates of the electronic ground state. These functions were employed to determine vibronic absorption spectra. The intensities of dipole forbidden but vibronically allowed transitions were calculated by explicitly evaluating integrals over the vibrational wave functions and the transition dipole functions of the involved electronic states. By this method the oscillator strengths of the dipole allowed (2)A(1)<--(2)B(2) and the dipole forbidden (2)B(1)<--(2)B(2) bands were computed. It turns out that the dipole forbidden transition is two orders of magnitude weaker than the dipole allowed one. The 0-0 excitation energies are found to be 30 256 cm(-1) for the (2)B(1) state and 34,646 cm(-1) for the (2)A(1) state. From the combined results of the excitation energies and oscillator strengths it is concluded that the experimentally observed peaks must be due to the (2)A(1) state, in contradiction to earlier assignments.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
15267489
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"