Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

AMPK stimulation increases LCFA but not glucose clearance in cardiac muscle in vivo.

AMP-activated protein kinase (AMPK) independently increases glucose and long-chain fatty acid (LCFA) utilization in isolated cardiac muscle preparations. Recent studies indicate this may be due to AMPK-induced phosphorylation and activation of nitric oxide synthase (NOS). Given this, the aim of the present study was to assess the effects of AMPK stimulation by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 10 mg.kg(-1).min(-1)) on glucose and LCFA utilization in cardiac muscle and to determine the NOS dependence of any observed effects. Catheters were chronically implanted in a carotid artery and jugular vein of Sprague-Dawley rats. After 4 days of recovery, conscious, unrestrained rats were given either water or water containing 1 mg/ml nitro-L-arginine methyl ester (L-NAME) for 2.5 days. After an overnight fast, rats underwent one of four protocols: saline, AICAR, AICAR + L-NAME, or AICAR + Intralipid (20%, 0.02 ml.kg(-1).min(-1)). Glucose was clamped at approximately 6.5 mM in all groups, and an intravenous bolus of 2-deoxy-[(3)H]glucose and [(125)I]-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid was administered to obtain indexes of glucose and LCFA uptake and clearance. Despite AMPK activation, as evidenced by acetyl-CoA carboxylase (Ser(221)) and AMPK phosphorylation (Thr(172)), AICAR increased cardiac LCFA but not glucose clearance. L-NAME + AICAR established that this effect was not due to NOS activation, and AICAR + Intralipid showed that increased cardiac LCFA clearance was not LCFA-concentration dependent. These results demonstrate that, in vivo, AMPK stimulation increases LCFA but not glucose clearance by a NOS-independent mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app