Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Conserved POU binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells.

The Sox2 transcription factor is expressed early in the stem cells of the blastocyst inner cell mass and, later, in neural stem cells. We previously identified a Sox2 5'-regulatory region directing transgene expression to the inner cell mass and, later, to neural stem cells and precursors of the forebrain. Here, we identify a core enhancer element able to specify transgene expression in forebrain neural precursors of mouse embryos, and we show that the same core element efficiently activates transcription in inner cell mass-derived embryonic stem (ES) cells. Mutation of POU factor binding sites, able to recognize the neural factors Brn1 and Brn2, shows that these sites contribute to transgene activity in neural cells. The same sites are also essential for activity in ES cells, where they bind different members of the POU family, including Oct4, as shown by gel shift assays and chromatin immunoprecipitation with anti-Oct4 antibodies. Our findings indicate a role for the same POU binding motifs in Sox2 transgene regulation in both ES and neural precursor cells. Oct4 might play a role in the regulation of Sox2 in ES (inner cell mass) cells and, possibly, at the transition between inner cell mass and neural cells, before recruitment of neural POU factors such as Brn1 and Brn2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app