JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice.

Circulation 2004 October 20
BACKGROUND: Nitric oxide (NO) deficiency contributes to diabetic wound healing impairment. The present study tested the hypothesis that increased cutaneous superoxide (O2-) levels in type 1 diabetic mice cause NO deficiency and delayed wound healing.

METHODS AND RESULTS: Wound healing was markedly delayed in streptozotocin-induced type 1 diabetic mice compared with the normal controls. There were significantly reduced levels of endothelial NO synthase (eNOS) protein and constitutive NOS activity in diabetic wounds, whereas O2- levels were markedly increased. A single regimen of cutaneous gene therapy of eNOS or manganese superoxide dismutase (MnSOD) restored such healing delay, with a concomitant suppression of wound O2- levels and augmentation of both eNOS protein and constitutive NOS activity. Gene therapy of MnSOD also increased cutaneous MnSOD activity. Cutaneous O2- levels were also increased in Ins2(Akita) diabetic mice. In vitro glucose treatment of cutaneous tissues from normal mice for 24 hours increased O2- levels in a concentration-dependent manner. The enhanced cutaneous O2- levels induced by high glucose in both normal and diabetic mice were abolished by the NADPH oxidase inhibitor apocynin and the protein kinase C inhibitor chelerythrine. Furthermore, ex vivo gene transfer of dominant-negative HA-tagged N17Rac1, which inhibits NADPH oxidase subunit Rac1, significantly inhibited cutaneous O2- formation induced by high glucose in both normal and Ins2(Akita) diabetic mice.

CONCLUSIONS: These results indicate that hyperglycemia augments cutaneous O2- levels, at least in part, via NADPH oxidase and protein kinase C pathways, resulting in impaired wound healing in type 1 diabetic mice. Gene therapy strategies aimed at restoring cutaneous NO bioavailability may provide an effective means to ameliorate delayed diabetic wound healing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app