Properties of the proton-evoked currents and their modulation by Ca2+ and Zn2+ in the acutely dissociated hippocampus CA1 neurons

Jun Gao, Long-Jun Wu, Lin Xu, Tian-Le Xu
Brain Research 2004 August 13, 1017 (1): 197-207
The characterization of acid-sensing ion channel (ASIC)-like currents has been reported in hippocampal neurons in primary culture. However, it is suggested that the profile of expression of ASICs changes in culture. In this study, we investigated the properties of proton-activated current and its modulation by extracellular Ca(2+) and Zn(2+) in neurons acutely dissociated from the rat hippocampal CA1 using conventional whole-cell patch-clamp recording. A rapidly decaying inward current and membrane depolarization was induced by exogenous application of acidic solution. The current was sensitive to the extracellular proton with a response threshold of pH 7.0-6.8 and the pH(50) of 6.1, the reversal potential close to the Na(+) equilibrium potential. It had a characteristic of acid-sensing ion channels (ASICs) as demonstrated by its sensitivity to amiloride (IC(50)=19.6+/-2.1 microM). Either low [Ca(2+)](o) or high [Zn(2+)](o) increased the amplitude of the current. All these characteristics are consistent with a current mediated through a mixture of homomeric ASIC1a and heteromeric ASIC1a+2a channels and closely replicate many of the characteristics that have been previously reported for hippocampal neurons cultured for a week or more, indicating that culture artifacts do not necessarily flaw the properties of ASICs. Interestingly, we found that high [Zn(2+)](o) (>10(-4) M) slowed the decay time constant of the ASIC-like current significantly in both acutely dissociated and cultured hippocampal neurons. In addition, the facilitating effects of low [Ca(2+)](o) and high [Zn(2+)](o) on the ASIC-like current were not additive. Since tissue acidosis, extracellular Zn(2+) elevation and/or Ca(2+) reduction occur concurrently under some physiological and/or pathological conditions, the present observations suggest that hippocampal ASICs may offer a novel pharmacological target for therapeutic invention.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"