JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Inhibition of tumor-associated fatty acid synthase activity enhances vinorelbine (Navelbine)-induced cytotoxicity and apoptotic cell death in human breast cancer cells.

Oncology Reports 2004 August
The lipogenic enzyme fatty acid synthase (FAS) is differentially overexpressed and hyperactivated in a biologically aggressive subset of breast carcinomas and minimally in most normal adult tissues, rendering it an interesting target for anti-neoplastic therapy development. Current trends in the treatment of human breast cancer are with drug combinations that result in improved responses as well as the ability to use less toxic concentrations of the drugs. Here, we envisioned that combinations of conventional chemotherapeutic agents with novel compounds directed against breast cancer-associated FAS hyperactivity may provide increased efficacy over existing therapy for human breast cancer. Specifically, we examined the ability of the mycotoxin cerulenin, a potent and non-competitive inhibitor of FAS activity, to enhance the cytotoxic effects of vinorelbine (Navelbine), a derivative of vinca alkaloid that interferes with tubulin assembly and exhibits activity against metastatic breast cancer. SK-Br3, MCF-7 and MDA-MB-231 human breast cancer cell lines were employed as models of high, moderate and low levels of FAS ('cerulenin-target'), respectively. Combinations of cerulenin with vinorelbine were tested for synergism, additivity or antagonism using the isobologram and the median-effect plot (Chou-Talalay) analyses. Breast cancer cells were either simultaneously exposed to cerulenin and vinorelbine for 24 h or sequentially to cerulenin for 24 h followed by vinorelbine for 24 h. Concurrent exposure to cerulenin and vinorelbine resulted in synergistic interactions in MCF-7 and MDA-MB-231 cell lines, while additivity was found in SK-Br3 cells. Sequencing cerulenin followed by vinorelbine resulted in synergism for SK-Br3 and MDA-MB-231 cells, whereas it showed additive effects in MCF-7 cells. FAS activity blockade was found to synergistically enhance apoptosis-inducing activity of vinorelbine, as determined by an enzyme-linked immunosorbent assay for histone-associated DNA fragments. To the best of our knowledge this is the first study demonstrating that breast cancer-associated FAS is playing an active role in human breast cancer chemosensitivity. We suggest that pharmacological inhibition of FAS activity is a novel molecular approach to enhance the cytotoxic effects of existing chemotherapeutic agents in human breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app