COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Spectral indices of human cerebral blood flow control: responses to augmented blood pressure oscillations.

Journal of Physiology 2004 September 16
We set out to fully examine the frequency domain relationship between arterial pressure and cerebral blood flow. Oscillatory lower body negative pressure (OLBNP) was used to create consistent blood pressure oscillations of varying frequency and amplitude to rigorously test for a frequency- and/or amplitude-dependent relationship between arterial pressure and cerebral flow. We also examined the predictions from OLBNP data for the cerebral flow response to the stepwise drop in pressure subsequent to deflation of ischaemic thigh cuffs. We measured spectral powers, cross-spectral coherence, and transfer function gains and phases in arterial pressure and cerebral flow during three amplitudes (0, 20, and 40 mmHg) and three frequencies (0.10, 0.05, and 0.03 Hz) of OLBNP in nine healthy young volunteers. Pressure fluctuations were directly related to OLBNP amplitude and inversely to OLBNP frequency. Although cerebral flow oscillations were increased, they did not demonstrate the same frequency dependence seen in pressure oscillations. The overall pattern of the pressure-flow relation was of decreasing coherence and gain and increasing phase with decreasing frequency, characteristic of a high-pass filter. Coherence between pressure and flow was increased at all frequencies by OLBNP, but was still significantly lower at frequencies below 0.07 Hz despite the augmented pressure input. In addition, predictions of thigh cuff data from spectral estimates were extremely inconsistent and highly variable, suggesting that cerebral autoregulation is a frequency-dependent mechanism that may not be fully characterized by linear methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app