JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT) in soil slurry.

The explosive 2,4,6-trinitrotoluene (TNT) is a contaminant of soils and ground waters worldwide. To help alleviate such environmental contamination, we investigated a coupled abiotic-biotic treatment scheme for remediating TNT-contaminated soil in slurry solutions. Two types of soil were used (sandy and silt loam) to simulate different soils that might be found at actual sites. These soils were subsequently contaminated with 5000 mg kg(-1) TNT. Mineralization of TNT was initially optimized for minimum reactant use (Fe(3+) and H(2)O(2)) and maximum soil slurry percentage (percent solids) using modified Fenton reactions conducted in the absence of light followed by the addition of an uncharacterized aerobic biomass. Greater than 97% TNT degradation was observed under optimum reaction conditions for both soils. Using two optimum reactant concentrations for each soil, coupled abiotic-biotic reactions showed an increase in TNT mineralization, from 41 to 73% and 34 to 64% in the sandy soil (10 and 20% slurry, respectively, 1470 mM H(2)O(2)), and increases from 12 to 23% and 13 to 28% in the silt loam soil (5% slurry, 294 and 1470 mM H(2)O(2), respectively). These results show promise in the use of combined abiotic-biotic treatment processes for soils contaminated with high concentrations of TNT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app