Clinical Trial
Journal Article
Add like
Add dislike
Add to saved papers

Different effects of fatiguing exercise on corticospinal and transcallosal excitability in human hand area motor cortex.

Following forceful exercise that leads to muscle fatigue, the size of muscle evoked responses (MEPs) generated by transcranial magnetic stimulation (TMS) in the exercised muscle is depressed over a prolonged period. Strong evidence implicates intracortical mechanisms in this depression. As well as evoking MEPs in contralateral muscles, TMS also reduces MEPs evoked in ipsilateral muscles through interhemispheric inhibition mediated by a transcallosal pathway. Here we have sought to determine whether this effect is also depressed after exercise. Using two magnetic stimulators, the aftereffects of unilateral hand muscle exercise on the ability of TMS delivered to the hemisphere that generated the exercise were examined to i) generate MEPs in the exercised hand muscles, and ii) depress MEPs evoked by TMS pulses in contralateral (non-exercised) hand muscles. After exercise there was a significant reduction in the amplitudes of MEPs evoked by TMS in the exercised muscles ( p<0.001). However, the same stimuli remained able to depress responses evoked by TMS to the contralateral hemisphere in the non-exercised muscles as effectively as before the exercise. We conclude that unlike the MEPs evoked by corticospinal output, interhemispheric inhibition evoked from the hemisphere that generated the exercise is not depressed after exercise. A similar differential effect on interhemispheric inhibition and corticospinal output has been reported recently for the effects of transcranial direct current (DC) stimulation of the motor cortex. Fatiguing exercise and transcranial DC stimulation may therefore engage similar intracortical mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app