JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

cAMP-response element-binding protein mediates tumor necrosis factor-alpha-induced vascular smooth muscle cell migration.

OBJECTIVE: Migration of vascular smooth muscle cells (VSMCs) contributes to formation of vascular stenotic lesions such as atherosclerosis and restenosis after angioplasty. Previous studies have demonstrated that tumor necrosis factor-alpha (TNF-alpha) is a potent migration factor for VSMCs. cAMP-response element-binding protein (CREB) is the stimulus-induced transcription factor and activates transcription of target genes such as c-fos and interleukin-6. We examined whether CREB is involved in TNF-alpha-induced VSMC migration.

METHODS AND RESULTS: TNF-alpha induced CREB phosphorylation with a peak at 15 minutes of stimulation. Pharmacological inhibition of p38 mitogen-activated protein kinase (p38-MAPK) inhibited TNF-alpha-induced CREB phosphorylation. Adenovirus-mediated overexpression of dominant-negative form of CREB suppressed TNF-alpha-induced CREB phosphorylation and c-fos mRNA expression. VSMC migration was evaluated using a Boyden chamber. Overexpression of dominant-negative form of CREB suppressed VSMC migration as well as Rac1 expression induced by TNF-alpha. Overexpression of dominant-negative Rac1 also inhibited TNF-alpha-induced VSMC migration.

CONCLUSIONS: Our results suggest that p38-MAPK/CREB/Rac1 pathway plays a critical role in TNF-alpha-induced VSMC migration and may be a novel therapeutic target for vascular stenotic lesion. Migration of vascular smooth muscle cells (VSMCs) contributes to formation of vascular stenotic lesions. TNF-alpha, a potent migration factor for VSMCs, activated CREB through p38 mitogen-activated protein kinase (p38-MAPK). CREB inhibition suppressed TNF-alpha-induced VSMC migration and Rac1 expression. These results suggest p38-MAPK/CREB/Rac1 pathway mediates TNF-alpha-induced VSMC migration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app