JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Induction of antigen-specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+CD25+CD4+ regulatory T cells.

Naturally arising CD25(+)CD4(+) regulatory T (T(R)) cells can be exploited to establish immunologic tolerance to non-self antigens. In vivo exposure of CD25(+)CD4(+) T cells from normal naive mice to alloantigen in a T cell-deficient environment elicited spontaneous expansion of alloantigen-specific CD25(+)CD4(+) T(R) cells, which suppressed allograft rejection mediated by subsequently transferred naive T cells, leading to long-term graft tolerance. The expanded T(R) cells, which became CD25(low) in the absence of other T cells, stably sustained suppressive activity, maintained expression levels of other T(R) cell-associated molecules, including Foxp3, CTLA-4 and GITR, and could adoptively transfer tolerance to normal mice. Furthermore, specific removal of the T(R) cells derived from originally transferred CD25(+)CD4(+) T(R) cells evoked graft rejection in the long-term tolerant mice, indicating that any T(R) cells deriving from CD25(-)CD4(+) naive T cells minimally contribute to graft tolerance and that natural T(R) cells are unable to infectiously confer significant suppressive activity to other T cells. Similar antigen-specific expansion of T(R) cells can also be achieved in vitro by stimulating naturally present CD25(+)CD4(+) T cells with alloantigen in the presence of IL-2. The expanded CD25(+)CD4(+) T cells potently suppressed even secondary MLR in vitro and, by in vivo transfer, established antigen-specific long-term graft tolerance. Thus, in vivo or in vitro, direct or indirect ways of antigen-specific expansion of naturally arising Foxp3(+)CD25(+)CD4(+) T(R) cells can establish antigen-specific dominant tolerance to non-self antigens, and would also be instrumental in re-establishing self-tolerance in autoimmune disease and antigen-specific negative control of pathological immune responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app