Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Position and ionization state of Asp in the core of membrane-inserted alpha helices control both the equilibrium between transmembrane and nontransmembrane helix topography and transmembrane helix positioning.

Biochemistry 2004 July 14
The behavior of model-membrane-inserted polyLeu-rich peptides containing Asp residues located at various positions in their hydrophobic core was investigated. The topography of the bilayer-inserted alpha helices formed by these peptides was evaluated by measuring the emission lambda(max) and quenching the fluorescence of a Trp at the center of the peptide sequence. When Asp residues were protonated (at low pH), peptides that were incorporated into vesicles composed of dioleoylphosphatidylcholine (DOPC) adopted a topography in which the polyLeu sequence predominantly formed a normal transmembrane (TM) helix. When Asp residues were ionized (at neutral or high pH), topography was altered in a manner that would allow the charged Asp residues to reside near the bilayer surface. In DOPC vesicles, most peptides repositioned so that the longest segment of consecutive hydrophobic residues (12 residue minimum) formed a truncated/shifted TM structure. However, peptides with one or two charged Asp residues close to the center of the hydrophobic sequence and thus lacking even a 12-residue continuous hydrophobic segment, formed a helical non-TM state locating near the bilayer surface. At low pH, incorporation of the peptides into thicker bilayers composed of dierucoylphosphatidylcholine (DEuPC) resulted in the formation of a mixture of the normal TM state and the non-TM helical state located near the bilayer surface. In DEuPC vesicles at high pH, the non-TM state tended to predominate. How Asp-ionization-dependent shifts in helix topography may regulate the function of membrane proteins exposed to environments with differing pH in vivo (e.g., endosomes) is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app