JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Regional effects of an antivascular endothelial growth factor receptor monoclonal antibody on receptor phosphorylation and apoptosis in human 253J B-V bladder cancer xenografts.

Cancer Research 2004 July 2
Vascular endothelial growth factor (VEGF) is a key angiogenic factor in a variety of solid tumors, making it one of the most attractive therapeutic targets. VEGF promotes the proliferation, survival, and differentiation of vascular endothelial cells by stimulating autophosphorylation and activation of VEGF receptor-2 (VEGFR-2, fetal liver kinase-1, and kinase insert domain-containing receptor). We developed fluorescence-based, quantitative methods to measure total VEGFR-2, VEGFR-2 phosphorylation, apoptosis, and microvessel density and size within whole tumor cross-sections using a laser scanning cytometer. Using these methods, we characterized the effects of DC101, a blocking antibody specific for murine VEGFR-2, on orthotopic human 253J-BV bladder tumors growing in nude mice. Basal levels of receptor phosphorylation were heterogeneous, with approximately 50% of endothelial cells positive for phosphorylated VEGFR-2 at baseline. DC101 therapy resulted in a 50% decrease in overall VEGFR-2 phosphorylation and a 15-fold and 8-fold increase in endothelial cell (CD31-positive) and tumor cell apoptosis, respectively. DC101 also decreased overall tumor microvessel density, but it mostly affected smaller CD105-negative microvessels located in the periphery of the tumor. Intriguingly, anti-VEGFR-2 therapy resulted in increased mean vessel size and an increase in overall VEGFR-2 levels. Increases in total VEGFR-2 levels were localized to the tumor core and were associated with increased expression of the oxygen-sensitive transcription factor, hypoxia inducible factor-1alpha. These data suggest that VEGFR inhibitors preferentially target discrete populations of tumor endothelial cells associated with the smaller peripheral blood vessels. Thus, agents that target a single receptor (e.g., VEGFR-2) may not be sufficient to completely inhibit tumor angiogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app