JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

The transcription factor NRF2 protects against pulmonary fibrosis.

The molecular mechanisms of pulmonary fibrosis are poorly understood, although reactive oxygen species are thought to have an important role. NRF2 is a transcription factor that protects cells and tissues from oxidative stress by activating protective antioxidant and detoxifying enzymes. We hypothesized that NRF2 protects lungs from injury and fibrosis induced by bleomycin, an anti-neoplastic agent that causes pulmonary fibrosis in susceptible patients. To test this hypothesis, mice with targeted deletion of Nrf2 (Nrf2-/-) and wild-type (Nrf2+/+) mice were treated with bleomycin or vehicle, and pulmonary injury and fibrotic responses were compared. Bleomycin-induced increases in lung weight, epithelial cell death, and inflammation were significantly greater in Nrf2-/- mice than in Nrf2+/+ mice. Indices of lung fibrosis (hydroxyproline content, collagen accumulation, fibrotic score, cell proliferation) were significantly greater in bleomycin-treated Nrf2-/- mice, compared with Nrf2+/+ mice. NRF2 expression and activity were elevated in Nrf2+/+ mice by bleomycin. Bleomycin caused greater up-regulation of several NRF2-inducible antioxidant enzyme genes and protein products in Nrf2+/+ mice compared with Nrf2-/- mice. Further, bleomycin-induced transcripts and protein levels of lung injury and fibrosis markers were significantly attenuated in Nrf2+/+ mice compared with Nrf2-/- mice. Results demonstrated that NRF2 has a critical role in protection against pulmonary fibrosis, presumably through enhancement of cellular antioxidant capacity. This study has important implications for the development of intervention strategies against fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app