Hydroxyl radicals generated in the rat spinal cord at the level produced by impact injury induce cell death by necrosis and apoptosis: protection by a metalloporphyrin

F Bao, D Liu
Neuroscience 2004, 126 (2): 285-95
We previously measured the time courses of hydrogen peroxide (H2O2), hydroxyl radical (*OH), and catalytic iron increases following traumatic spinal cord injury (SCI). This study determines whether the SCI-elevated level of *OH causes cell death. OH was generated by administering H2O2 and Fe2+ at the concentrations attained following SCI, each through a separate microdialysis fiber inserted laterally into the gray matter of the cord. The duration of *OH generation mimics the duration of its elevation after SCI. The death of neurons and astrocytes was characterized at 24 h post-*OH exposure and quantitated by counting surviving cells along the fiber track in sections stained with Cresyl Violet, or immunohistochemically stained with anti-neuron-specific enolase (anti-NSE) and anti-glial fibrillary acidic protein (anti-GFAP). DNA fragmentation in neurons was characterized by double staining with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) and anti-NSE. Using a one way ANOVA followed by the Tukey test, we demonstrated that *OH generated in the cord induced significant losses of neurons in both Cresyl Violet (P<0.001) and anti-NSE-stained sections (P<0.001), and of astrocytes in GFAP-stained sections (P=0.001). *OH generated in the cord increased numbers of TUNEL-positive neurons compared with Ringer's solution administered as a control (P=0.001). Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimetic and a broad spectrum reactive species scavenger, significantly reduced *OH-induced death of neurons (P<0.001 in anti-NSE stained sections and P=0.002 in the Cresyl Violet-stained sections) and astrocytes (P=0.03). It also reduced the numbers of TUNEL-positive neurons (P=0.01). Electron microscopy confirmed that generated *OH induced neuronal and glial death with characteristic features of both necrosis and apoptosis. We conclude that 1) SCI-elevated *OH is sufficient to induce both necrosis and apoptosis, criteria for identifying an endogenous secondary damaging agent; 2) MnTBAP reduces *OH-induced cell death, perhaps by removing H2O2 administered in the tissue, thereby blocking formation of *OH, and also by scavenging downstream reactive species.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"