COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Upregulation of endothelial nitric oxide synthase maintains nitric oxide production in the cerebellum of thioacetamide cirrhotic rats.

This study examines the expression and cellular distribution pattern of nitric oxide synthase (NOS) isoforms, nitrotyrosine-derived complexes, and the nitric oxide (NO) production in the cerebellum of rats with cirrhosis induced by thioacetamide (TAA). The results showed local changes in the tissue distribution pattern of the NOS isoforms and nitrated proteins in the cerebellum of these animals. Particularly, eNOS immunoreactivity in perivascular glial cells of the white matter was detected only in TAA-treated animals. In addition, although neither neuronal NOS (nNOS) nor inducible NOS (iNOS) cerebellar protein levels appeared to be affected, the endothelial NOS (eNOS) isoform significantly increased its expression, and NO production slightly augmented in TAA-treated rats. These NOS/NO changes may contribute differently to the evolution of the hepatic disease either by maintaining the guanosine monophosphate-NO signal transduction pathways and the physiological cerebellar functions or by inducing oxidative stress and cell damage. This model gives rise to the hypothesis that the upregulation of the eNOS maintains the physiological production of NO, while the iNOS is silenced and the nNOS remains unchanged. The differential NOS-distribution and expression pattern may be one of the mechanisms involved to balance cerebellar NO production in order to minimize TAA toxic injury. These data help elucidate the role of the NOS/NO system in the development and progress of hepatic encephalopathy associated with TAA cirrhosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app