Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Expression of chemokines by human fetal microglia after treatment with the human immunodeficiency virus type 1 protein Tat.

Chemokines are important mediators of inflammation. It has been demonstrated that there is an increase in chemokine expression in both the sera and brain of individuals infected with human immunodeficiency virus type 1 (HIV-1). The HIV-1 viral protein, Tat, a transcriptional regulator, has been detected in the central nervous system (CNS) of infected individuals, and has been demonstrated to induce chemokines from various cells within the brain. The authors now show that the interaction of human microglia, the resident phagocytes of the brain, with Tat leads to dramatic increases in the secretion of the chemokines CCL2, CXCL8, CXCL10, CCL3, CCL4, and CCL5. Treatment of microglia with Tat plus specific inhibitors of signal transduction pathways demonstrated that the induction of each chemokine is regulated differently. Tat-induced expression of CCL2 and CCL4 was mediated by the activation of the extracellular regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol 3-kinase (PI3K) pathway, whereas the induction of CXCL8 and CCL3 was mediated only by the p38 MAPK pathway. Tat-induced CXCL10 expression was mediated, to some extent, by activation of the ERK1/2 MAPK pathway, phosphatidylinositol 3-kinase pathway, and the p38 MAPK pathway, whereas CCL5 expression was not mediated by any pathway tested. Western blot analysis demonstrated phosphorylation of ERK 1/2 and Akt upon stimulation of microglia with Tat. These data suggest that a soluble HIV-1 viral protein can alter the chemokine balance in the brain, which can then lead to an influx of inflammatory cells and contribute to the neuropathogenesis of HIV-1 infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app