JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

EEG dynamics in patients with Alzheimer's disease.

Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by cognitive and intellectual deficits and behavior disturbance. The electroencephalogram (EEG) has been used as a tool for diagnosing AD for several decades. The hallmark of EEG abnormalities in AD patients is a shift of the power spectrum to lower frequencies and a decrease in coherence of fast rhythms. These abnormalities are thought to be associated with functional disconnections among cortical areas resulting from death of cortical neurons, axonal pathology, cholinergic deficits, etc. This article reviews main findings of EEG abnormalities in AD patients obtained from conventional spectral analysis and nonlinear dynamical methods. In particular, nonlinear alterations in the EEG of AD patients, i.e. a decreased complexity of EEG patterns and reduced information transmission among cortical areas, and their clinical implications are discussed. For future studies, improvement of the accuracy of differential diagnosis and early detection of AD based on multimodal approaches, longitudinal studies on nonlinear dynamics of the EEG, drug effects on the EEG dynamics, and linear and nonlinear functional connectivity among cortical regions in AD are proposed to be investigated. EEG abnormalities of AD patients are characterized by slowed mean frequency, less complex activity, and reduced coherences among cortical regions. These abnormalities suggest that the EEG has utility as a valuable tool for differential and early diagnosis of AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app